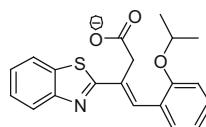

Bioorganic & Medicinal Chemistry Letters Vol. 19, No. 3, 2009

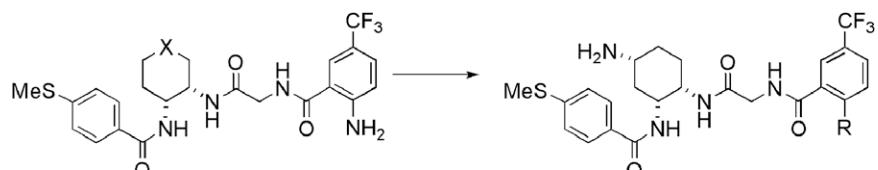
Contents

ARTICLES


Synthesis of 1-(methanesulfonyl- and aminosulfonylphenyl)acetylenes that possess a 2-(*N*-difluoromethyl-1,2-dihydropyridin-2-one) pharmacophore: Evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity pp 584–588

Morshed Alam Chowdhury, Khaled R. A. Abdellatif, Ying Dong, Moshfiqur Rahman, Dipankar Das, Mavanur R. Suresh, Edward E. Knaus*

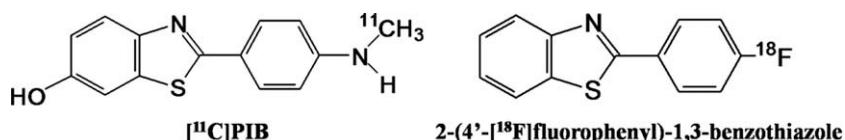
Discovery of novel inhibitors of *Trypanosoma cruzi* trans-sialidase from in silico screening pp 589–596


João Neres*, Mark L. Brewer, Laura Ratier, Horacio Botti, Alejandro Buschiazzo, Philip N. Edwards, Paul N. Mortenson, Michael H. Charlton, Pedro M. Alzari, Alberto C. Frasch, Richard A. Bryce*, Kenneth T. Douglas

Novel inhibitors of *Trypanosoma cruzi* trans-sialidase, discovered from in silico screening, are reported.

Discovery of trisubstituted cyclohexanes as potent CC chemokine receptor 2 (CCR2) antagonists pp 597–601

Robert J. Cherney*, John B. Brogan, Ruowei Mo, Yvonne C. Lo, Gengjie Yang, Persymphonie B. Miller, Peggy A. Scherle, Bruce F. Molino, Percy H. Carter, Carl P. Decicco

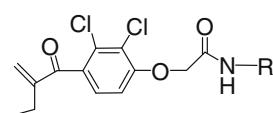

1 $\mathbf{X} = \text{CH}_2$; CCR2 Bnd $\text{IC}_{50} = 155 \text{ nM}$
2 $\mathbf{X} = \text{NH}$; CCR2 Bnd $\text{IC}_{50} = 28 \text{ nM}$

36 $\mathbf{R} = \text{H}$; CCR2 Bnd $\text{IC}_{50} = 2.4 \text{ nM}$
38 $\mathbf{R} = \text{NH}_2$; CCR2 Bnd $\text{IC}_{50} = 4.8 \text{ nM}$

Synthesis of ¹⁸F-labelled 2-(4'-fluorophenyl)-1,3-benzothiazole and evaluation as amyloid imaging agent in comparison with [¹¹C]PIB

pp 602–605

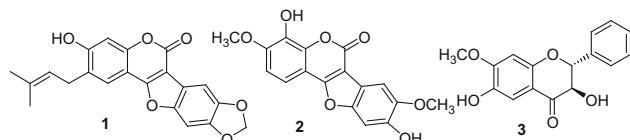
K. Serdons*, T. Verduyckt, D. Vanderghenste, J. Cleynhens, P. Borghgraef, P. Vermaelen, C. Terwinghe, F. Van Leuven, K. Van Laere, H. Kung, G. Bormans, A. Verbruggen



2-(4'-[¹⁸F]fluorophenyl)-1,3-benzothiazole was synthesized as derivative of [¹¹C]PIB to overcome the limitations associated with the short half-life of the carbon-11 label and was biologically evaluated in comparison with PIB.

Amide derivatives of ethacrynic acid: Synthesis and evaluation as antagonists of Wnt/β-catenin signaling and CLL cell survival

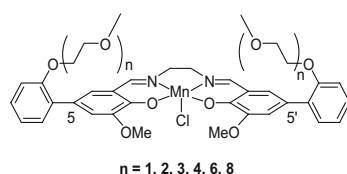
pp 606–609


Guangyi Jin, Desheng Lu, Shiyin Yao, Christina C. N. Wu, Jerry X. Liu, Dennis A. Carson, Howard B. Cottam*

Osteogenic activity of constituents from *Butea monosperma*

pp 610–613

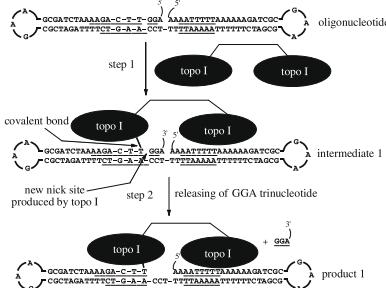
Rakesh Maurya*, Dinesh K. Yadav, Geetu Singh, Biju Bhargavan, P. S. Narayana Murthy, Mahendra Sahai, Man Mohan Singh


Three new compounds named buteaspermin A (1), buteaspermin B (2) and buteaspermanol (3), along with 19 known compounds were isolated from the stem bark of *Butea monosperma*. Five of these compounds 7, 10–13 showed promising osteogenic activity.

Effect of the oligo(ethylene glycol) group on the antioxidant activity of manganese salen complexes

pp 614–617

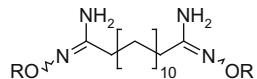
Wonchoul Park, Dongyeol Lim*


The SOD activities of oligo(ethylene glycol) derivatives of manganese salen complexes were similar and slightly more potent than the standard compound EUK-134. Their catalase-like activity was lower than that of EUK-134 in the initial conversion rate; however, some analogs exhibited a better catalytic turnover number.

Nick-containing oligonucleotides as human topoisomerase I inhibitors

pp 618–623

Sock Teng Chua, Ngee Mien Quek*, Ming Li, Magdeline Tao Tao Ng, Weixing Yuan, May Ling Chua, Juanjuan Guo, Li Eng Koh, Ruijuan Ye, Tianhu Li*

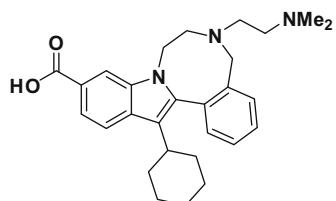


Here, we report oligonucleotides with various lengths that contain nick and topoisomerase I-binding sites as human topoisomerase I inhibitors.

Design and synthesis of amidoxime derivatives for orally potent C-alkylamidine-based antimalarial agents

pp 624–626

Mahama Ouattara, Sharon Wein, Séverine Denoyelle, Stéphanie Ortial, Thierry Durand, Roger Escalle, Henri Vial, Yen Vo-Hoang*

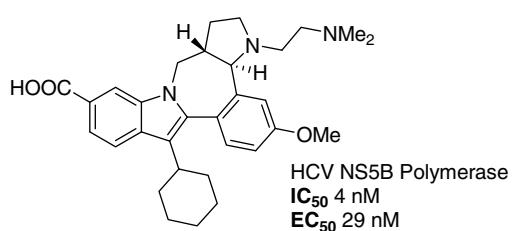


Specific O-substitutions of amidoximes are needed to design orally potent C-alkylamidine-based antimalarial agents.

Tetracyclic indole inhibitors of hepatitis C virus NS5B-polymerase

pp 627–632

Ian Stansfield*, Caterina Ercolani, Angela Mackay, Immacolata Conte, Marco Pompei, Uwe Koch, Nadia Gennari, Claudio Giuliano, Michael Rowley, Frank Narjes

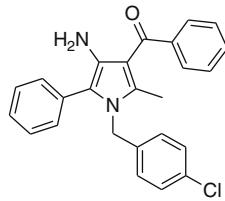


The evolutionary path is reported to conformationally constrained indole inhibitors of HCV NS5B-polymerase. Biochemical and cell-based potency was achieved, coupled with attractive DMPK properties—leading ultimately to the identification of a pre-clinical candidate with an excellent predicted human pharmacokinetic profile.

Discovery of pentacyclic compounds as potent inhibitors of hepatitis C virus NS5B RNA polymerase

pp 633–638

Jörg Habermann*, Elena Capitò, Maria del Rosario Rico Ferreira, Uwe Koch, Frank Narjes



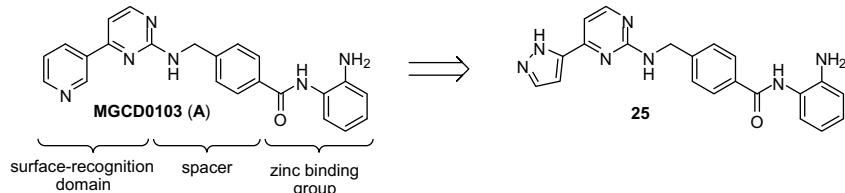
The synthesis and SAR of pentacyclic indoles as potent inhibitors of HCV NS5B polymerase is reported.

Synthesis and characterization of a peripherally restricted CB₁ cannabinoid antagonist, URB447, that reduces feeding and body-weight gain in mice

pp 639–643

Jesse LoVerme, Andrea Duranti, Andrea Tontini, Gilberto Spadoni, Marco Mor, Silvia Rivara, Nephi Stella, Cong Xu, Giorgio Tarzia*, Daniele Piomelli*

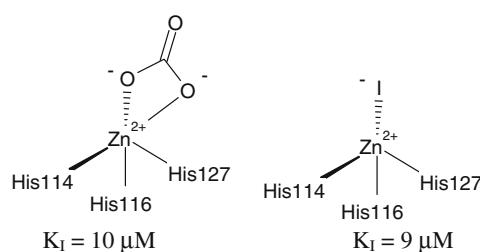
URB447


Synthesis and in vivo pharmacology of the first mixed CB₁ antagonist/CB₂ agonist, URB447, which reduces food intake in rats with a peripheral mechanism, are reported.

SAR and biological evaluation of analogues of a small molecule histone deacetylase inhibitor *N*-(2-aminophenyl)-4-((4-(pyridin-3-yl)pyrimidin-2-ylamino)methyl)benzamide (MGCD0103)

pp 644–649

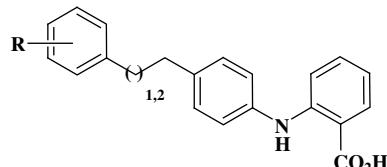
Stéphane Raeppe*, Nancy Zhou, Frédéric Gaudette, Silvana Leit, Isabelle Paquin, Guillaume Larouche, Oscar Moradei, Sylvie Fréchette, Ljubomir Isakovic, Daniel Delorme, Marielle Fournel, Ann Kalita, Aihua Lu, Marie-Claude Trachy-Bourget, Pu Theresa Yan, Jianhong Liu, Jubrail Rahil, James Wang, Jeffrey M. Besterman, Koji Murakami, Zuomei Li, Arkadii Vaisburg



Analogues of the clinical compound MGCD0103 (A) were designed, synthesized, and evaluated in multiple in vitro assays. Lead molecule of the series, compound 25 showed significant anti-tumor activity *in vivo* in different mouse tumor xenograft models upon oral dosing.

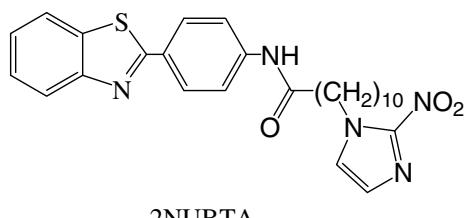
Carbonic anhydrase inhibitors: Inhibition studies of a coral secretory isoform with inorganic anions

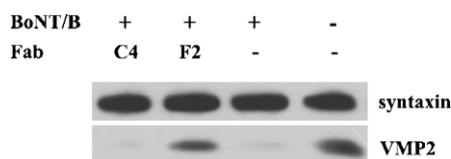
pp 650–653


Anthony Bertucci, Alessio Innocenti, Didier Zoccola*, Andrea Scozzafava, Denis Allemand, Sylvie Tambutté, Claudiu T. Supuran*

The synthesis and structure–activity relationship of substituted *N*-phenyl anthranilic acid analogs as amyloid aggregation inhibitors

pp 654–657

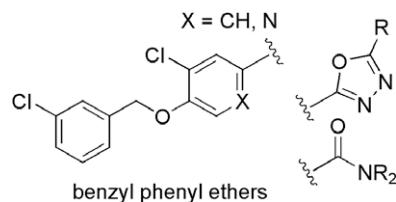

Lloyd J. Simons, Bradley W. Caprathe, Michael Callahan, James M. Graham, Takenori Kimura, Yingjie Lai, Harry LeVine III, William Lipinski, Annette T. Sakkab, Yoshikazu Tasaki, Lary C. Walker, Tomoyuki Yasunaga, Yuyang Ye, Nian Zhuang, Corinne E. Augelli-Szafran*


It is believed that β-amyloid aggregation is an important event in the development of Alzheimer's disease. In the course of our studies to identify β-amyloid aggregation inhibitors, a series of *N*-phenyl anthranilic acid analogs were synthesized and studied for β-amyloid inhibition activity. The synthesis, structure–activity relationship, and *in vivo* activity of these analogs are discussed.

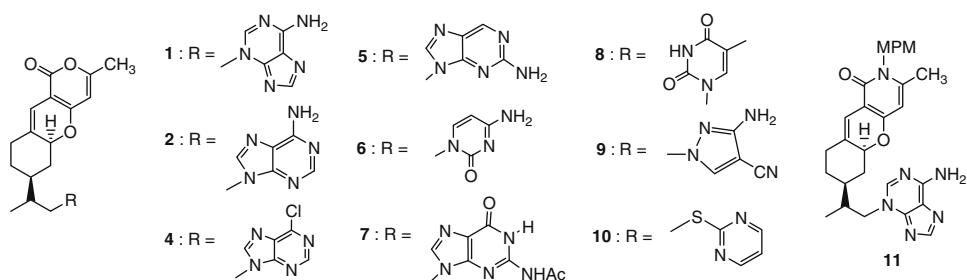
Synthesis and biological evaluation of radioiodinated 2NUBTA as a cerebral ischemia marker

pp 658–661

Taiwei Chu ^{*}, Zejun Li, Xiangyun Wang**Selection and characterization of a human monoclonal neutralizing antibody for *Clostridium Botulinum* neurotoxin serotype B**

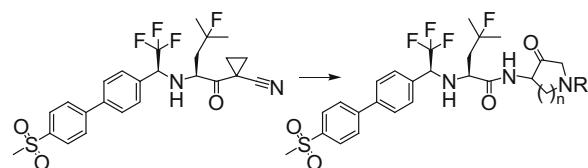

pp 662–664

Heyue Zhou, Bin Zhou, Sabine Pellett, Eric A. Johnson, Kim D. Janda ^{*}


A human neutralizing antibody was selected from a naïve phage display library that specifically binds Botulinum neurotoxin serotype B. Biochemical studies provide evidence for its therapeutic potential and further development.

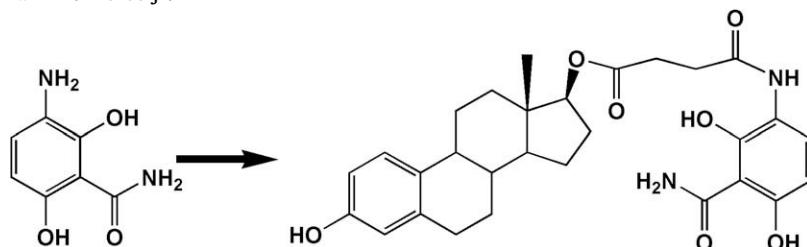
Discovery and SAR of benzyl phenyl ethers as inhibitors of bacterial phenylalanyl-tRNA synthetase

pp 665–669


Justin I. Montgomery ^{*}, Peter L. Toogood, Kim M. Hutchings, Jia Liu, Lakshmi Narasimhan, Timothy Braden, Michael R. Dermeyer, Angela D. Kulynych, Yvonne D. Smith, Joseph S. Warmus, Clarke Taylor**Syntheses of tricyclic pyrones and pyridinones and protection of A_β-peptide induced MC65 neuronal cell death**

pp 670–674

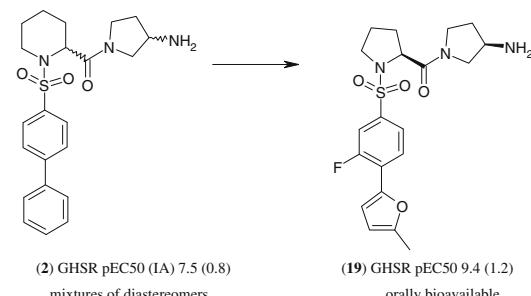
Sandeep Rana, Hyun-Seok Hong, Lydia Barrigan, Lee-Way Jin, Duy H. Hua ^{*}


Investigation of ketone warheads as alternatives to the nitrile for preparation of potent and selective cathepsin K inhibitors pp 675–679

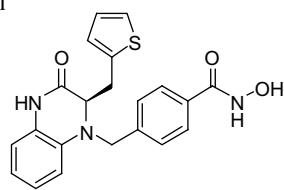
Michael J. Boyd*, Sheldon N. Crane, Joël Robichaud, John Scheigetz, W. Cameron Black, Nathalie Chauret, Qingping Wang, Frédéric Massé, Renata M. Oballa

Bone selective effect of an estradiol conjugate with a novel tetracycline-derived bone-targeting agent pp 680–683

Jason R. Neale, Natali B. Richter, Kevyn E. Merten, K. Grant Taylor, Sujan Singh, Leonard C. Waite, Nicole K. Emery, Ned B. Smith, Jian Cai, William M. Pierce Jr. *


A novel bone-targeting agent containing elements of the tricarbonylmethane system of ring A of tetracycline was developed and conjugated to estradiol, resulting in a bone-targeted estrogen.

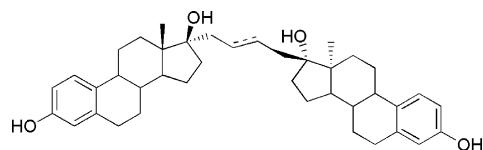
Aryl sulphonyl amides as potent agonists of the growth hormone secretagogue (ghrelin) receptor pp 684–687


Jason Witherington*, Lee Abberley, Benjamin R. Bellenie, Rio Boatman, Katharine Collis, David K. Dean, Alessandra Gaiba, N. Paul King, Nicola Shuker, Jon G. A. Steadman, Andrew K. Takle, Gareth Sanger, Sharon Butler, Fiona McKay, Alison Muir, Kim Winborn, Robert W. Ward, Tom D. Heightman

As part of an on-going lead optimisation effort, a cross screening exercise identified an aryl sulphonyl amide hit that was optimised to afford a highly potent series of ghrelin receptor agonists that displayed evidence of systemic exposure following oral administration.

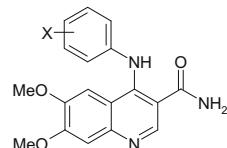
Novel HDAC6 isoform selective chiral small molecule histone deacetylase inhibitors pp 688–692

David V. Smil*, Sukhdev Manku, Yves A. Chantigny, Silvana Leit, Amal Wahhab, Theresa P. Yan, Marielle Fournel, Christiane Maroun, Zuomei Li, Anne-Marie Lemieux, Alina Nicolescu, Jubrail Rahil, Sylvain Lefebvre, Anthony Panetta, Jeffrey M. Besterman, Robert Déziel


7d
HDAC6 IC₅₀ = 40 nM
EC₅₀ TubAc = 70 nM

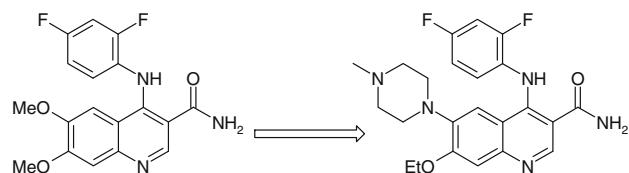
A number of potent (IC₅₀ = 10–200 nM) and highly selective HDAC6 inhibitors are reported.

Estradiol dimers as a new class of steroid sulfatase reversible inhibitors


pp 693–696

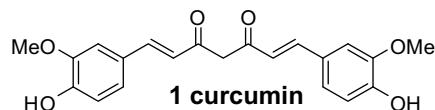
Diane Fournier, Donald Poirier*

Identification of 3-amido-4-anilinoquinolines as potent and selective inhibitors of CSF-1R kinase


pp 697–700

David A. Scott*, Carrie L. Balliet, Donald J. Cook, Audrey M. Davies, Thomas W. Gero, Charles A. Omer, Srinivasu Poondru, Maria-Elena Theoclitou, Boris Tyurin, Michael J. Zinda

3-Amido-4-anilinoquinolines as CSF-1R kinase inhibitors 2: Optimization of the PK profile

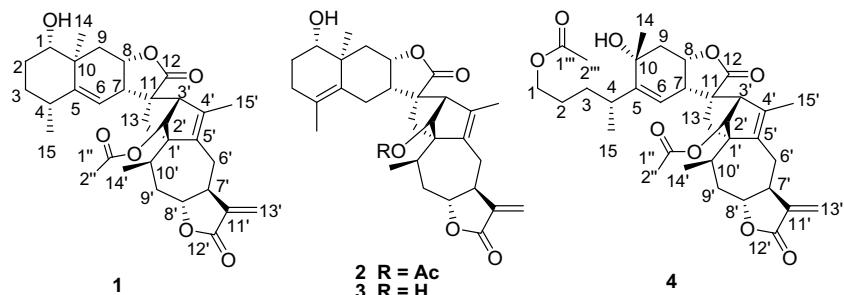

pp 701–705

David A. Scott*, Kirsten J. Bell, Cheryl T. Campbell, Donald J. Cook, Les A. Dakin, David J. Del Valle, Lisa Drew, Thomas W. Gero, Maureen M. Hattersley, Charles A. Omer, Boris Tyurin, Xiaolan Zheng

Curcumin is a potent DNA hypomethylation agent

pp 706–709

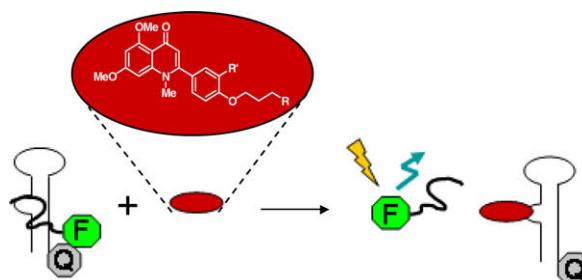
Zhongfa Liu*, Zhiliang Xie, William Jones, Ryan E. Pavlovic, Shujun Liu, Jianhua Yu, Pui-kai Li, Jiayuh Lin, Jame R. Fuchs, Guido Marcucci, Chenglong Li, Kenneth K. Chan


A potent dietary DNA methylation inhibitor, curcumin 1 ($EC_{50} = 30$ nM) and its hypomethylation activity on MV4-11 cells (15–20% decrease in global DNA methylation) is reported.

Japonicones A-D, bioactive dimeric sesquiterpenes from *Inula japonica* Thunb.

pp 710-713

Jiang Jiang Qin, Hui Zi Jin, Jian Jun Fu, Xiao Jia Hu, Yan Wang, Shi Kai Yan*, Wei Dong Zhang*

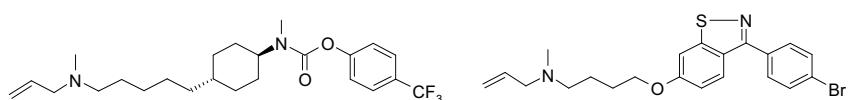


i⁺

Synthesis and biological evaluation of 2-phenylquinolones targeted at Tat/TAR recognition

pp 714-717

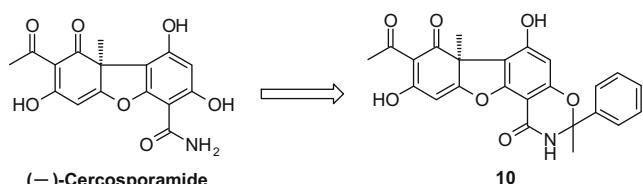
Giuseppe Manfroni, Barbara Gatto*, Oriana Tabarrini, Stefano Sabatini, Violetta Cecchetti, Giulia Giaretta, Cristina Parolin, Claudia Del Vecchio, Arianna Calistro, Manlio Palumbo, Arnaldo Fravolini


i+

Fluorescence quenching analysis demonstrates that 2-phenylquinolone derivatives efficiently inhibit Tat/TAR recognition.

Oxidosqualene cyclase from *Saccharomyces cerevisiae*, *Trypanosoma cruzi*, *Pneumocystis carinii* and *Arabidopsis thaliana* expressed in yeast: A model for the development of novel antiparasitic agents

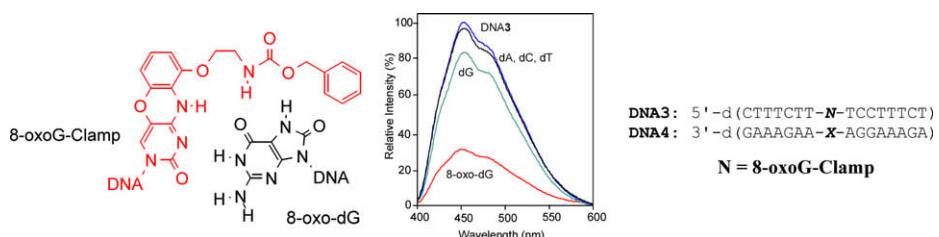
pp 718-723


Gianni Balliano*, Henrietta Dehmlow*, Simonetta Oliaro-Bosso, Matilde Scaldaferrri, Silvia Taramino, Franca Viola, Giulia Caron, Johannes Aebi, Jean Ackermann

(-)-Cercosporamide derivatives as novel antihyperglycemic agents

pp 724-726

Akhiro Furukawa*, Tsuyoshi Arita, Susumu Satoh, Kazushi Araki, Masanori Kuroha, Jun Ohsumi

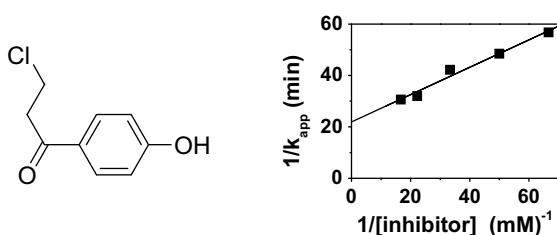


The syntheses of (–)-Cercosporamide derivatives and their plasma glucose lowering effects are reported.

Selective fluorescence quenching of the 8-oxoG-clamp by 8-oxodeoxyguanosine in ODN

pp 727–730

Tamer Nasr, Zhichun Li, Osamu Nakagawa, Yosuke Taniguchi, Sayaka Ono, Shigeki Sasaki *

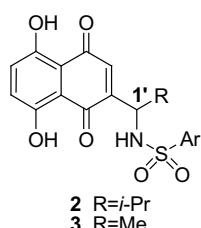


The 8-oxoG-clamp, a specific fluorescence probe for 2'-deoxy-8-oxoguanosine (8-oxo-dG) in solutions, was incorporated into the ODN, which was shown to be a selective fluorescence probe for 8-oxo-dG in DNA.

Inactivation of GABA transaminase by 3-chloro-1-(4-hydroxyphenyl)propan-1-one

pp 731–734

Yun-Hai Tao, Hui-Bi Xu, Xiang-Liang Yang *

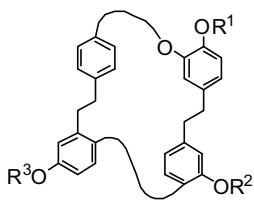


3-Chloro-1-(4-hydroxyphenyl)propan-1-one (9) was found to inactivate potently the enzyme in a time-dependent manner.

Synthesis and biological activity of novel shikonin analogues

pp 735–737

Wenjing Wang, Mei Dai, Caihua Zhu, Jiangang Zhang, Liping Lin, Jian Ding *, Wenhui Duan *

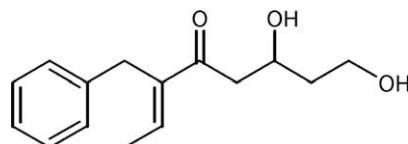

A series of shikonin analogues have been synthesized, these new analogues showed substantial in vitro antitumor activity.

Synthesis of riccardin C and its seven analogues. Part 1: The role of their phenolic hydroxy groups as LXR α agonists

pp 738–741

Hideaki Hioki, Naoki Shima, Kota Kawaguchi, Kenich Harada, Miwa Kubo, Tomoyuki Esumi, Tomoko Nishimaki-Mogami, Jun-ichi Sawada, Toshihiro Hashimoto, Yoshinori Asakawa, Yoshiyasu Fukuyama *

Riccardin C and its 7 analogues were synthesized. The structure–activity relationship of these compounds indicated that all hydroxy groups in riccardin C are essential for its binding to LXR α .

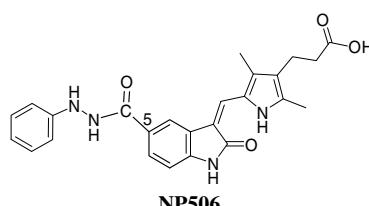

$\text{R}^1 - \text{R}^3 = \text{H} : \text{riccardin C}$

$\text{R}^1 - \text{R}^3 = \text{H or Me}:$
 7 possible analogues

Benzylidihydroxyoctenone, a novel anticancer agent, induces apoptosis via mitochondrial-mediated pathway in androgen-sensitive LNCaP prostate cancer cells

pp 742–744

Hong Sang Moon, Haeyoung Lim, Sangik Moon, Ha Lim Oh, Young-Tae Kim, Min Kyoung Kim, Chul-Hoon Lee *

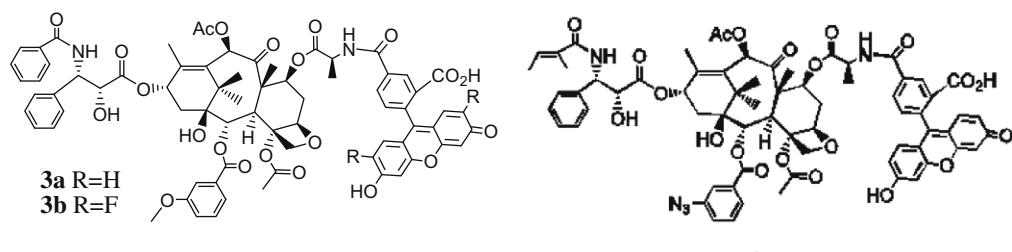


The chemical structure and nomenclature of F3-2-5, (E)-3-benzyl-6,8-dihydroxyoct-2-en-4-one.

5-Substituted pyrido[2,3-*d*]pyrimidine, an inhibitor against three receptor tyrosine kinases

pp 745–750

Naparat Kammasud, Chantana Boonyarat, Kingkan Sanphanya, Maleeruk Utsintong, Satoshi Tsunoda, Hiroaki Sakurai, Ikuo Saiki, Isabelle André, David S. Grierson, Opa Vajragupta *

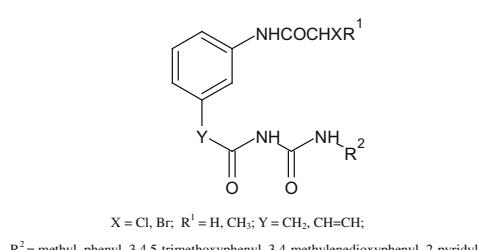


The introduction of the phenyl hydrazide motif to the position 5 of the pyrido[2,3-*d*]pyrimidine scaffold in NP506 led to the inhibitory effect in two signaling pathway: inhibition of AKT activation in the phosphatidyl inositol 3'-kinase (PI13K)/AKT signaling pathway and the inhibition of ERK and JNK activation in MAPK pathway.

Synthesis and biological activities of high affinity taxane-based fluorescent probes

pp 751–754

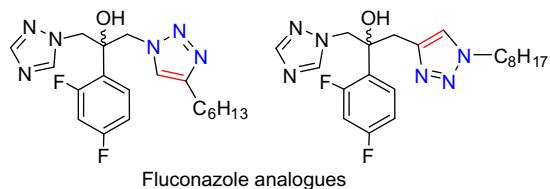
Xuan Li, Isabel Barasoain, Ruth Matesanz, J. Fernando Díaz *, Wei-Shuo Fang *



Three fluorescent probes **3a**, **3b**, and **4** have been synthesized through conjugation of fluorescein and difluorescein groups to the 7-OH of C-2 modified paclitaxel and cephalomannine derivatives with very high affinity to microtubules. All these probes exhibited potent tubulin assembly promotion and tumor cell killing activities.

Synthesis and activity evaluation of benzoylurea derivatives as potential antiproliferative agents

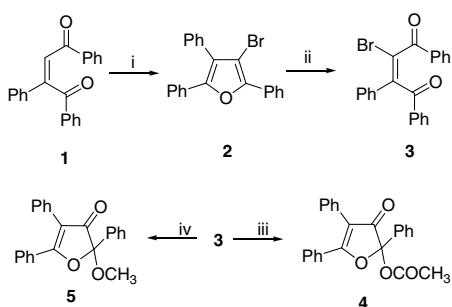
pp 755–758


Dan-Qing Song, Yue-Ming Wang, Na-Na Du, Wei-Ying He, Ke-Liang Chen, Gui-Fang Wang, Peng Yang, Lian-Zong Wu, Xue-Bo Zhang, Jian-Dong Jiang *

Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues

pp 759–763

Nilkanth G. Aher, Vandana S. Pore*, Nripendra N. Mishra, Awanit Kumar, Praveen K. Shukla, Aanchal Sharma, Manoj K. Bhat

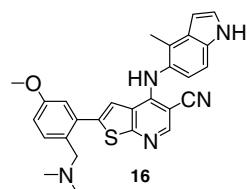


i⁺

Preliminary investigations on the synthesis and antitumor activity of 3(2*H*)-furanones

pp 764–765

J. P. Rappai, V. Raman, P. A. Unnikrishnan, S. Prathapan*, S. K. Thomas, C. S. Paulose

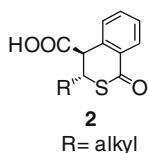


Synthesis and antitumor activity of two triaryl-3(2*H*)-furanones is reported.

Second generation 4-(4-methyl-1*H*-indol-5-ylamino)-2-phenylthieno[2,3-*b*]pyridine-5-carbonitrile PKC θ inhibitors

pp 776-769

Biqi Wu, Diane H. Boschelli ^{*}, Julie Lee, Xiaoke Yang, Divya Chaudhary

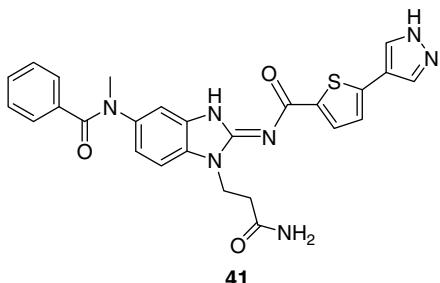


The 4-(4-methyl-1*H*-indol-5-ylamino)thieno[2,3-*b*]pyridine-5-carbonitrile **16** had an IC₅₀ of 16 nM for the inhibition of PKC δ activity.

1-Oxo-3-substituted-isothiochroman-4-carboxylic acid compounds: Synthesis and biological activities of FAS inhibition

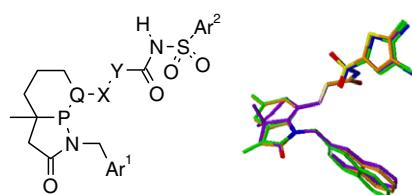
pp 770-772

Xiaokui Wang, Guoming Zhao, Yao Chen, Xiaowei Xu, Wu Zhong, Lili Wang, Song Li*



The synthesis and biological activity of a new series of compounds **2** are described.

Discovery of potent inhibitors of interleukin-2 inducible T-cell kinase (ITK) through structure-based drug design pp 773–777

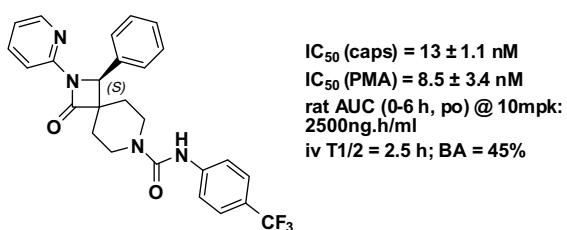

Brian N. Cook*, Jörg Bentzien, Andre White, Peter A. Nemoto, Ji Wang, Chuk C. Man, Fariba Soleymanzadeh, Hnin Hnin Khine, Mohammed A. Kashem, Stanley Z. Kugler Jr., John P. Wolak, Gregory P. Roth, Stéphane De Lombaert, Steven S. Pullen, Hidenori Takahashi

This work describes the discovery of ITK inhibitors through structure-based design where high-resolution crystal structural information was used to optimize interactions within the kinase specificity pocket of the enzyme to improve both potency and selectivity.

Peri-substituted hexahydro-indolones as novel, potent and selective human EP₃ receptor antagonists

pp 778–782

Matthew O'Connell, Wayne Zeller, James Burgeson, Rama K. Mishra, Jose Ramirez, Alex S. Kiselyov, Björkell Andrésson, Mark E. Gurney, Jasbir Singh*

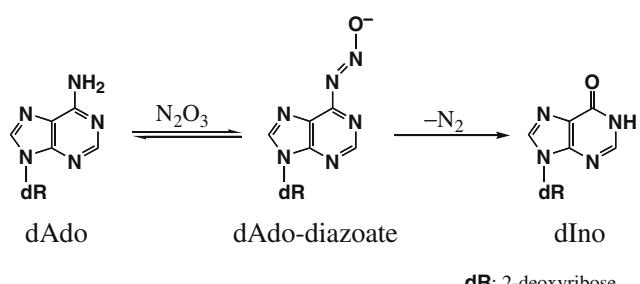


A series of peri-substituted [4.3.0] bicyclic non-aromatic heterocycles have been identified as potent and selective hEP₃ receptor antagonists. These molecules adopt a hairpin conformation that overlaps with the endogenous ligand PGE₂ and fits into an internally generated EP₃ pharmacophore model. Optimized compounds show good metabolic stability and improved solubility over their corresponding bicyclic aromatic analogues.

Spiro-piperidine azetidinones as potent TRPV1 antagonists

pp 783–787

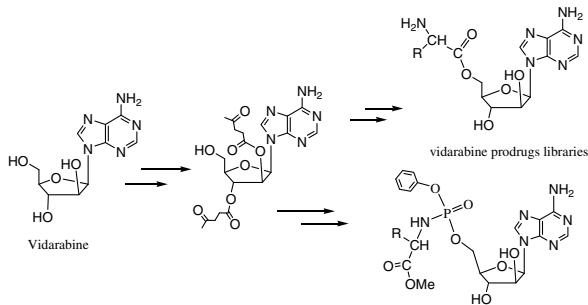
Dong Xiao*, Anandan Palani, Robert Aslanian, Brian A. McKittrick, Andrew T. McPhail, Craig C. Correll, P. Tara Phelps, John C. Anthes, Diane Rindgen



A potent TRPV1 antagonist with good rat pharmacokinetic profile was discovered.

Formation of diazoate intermediate upon nitrous acid and nitric oxide treatment of 2'-deoxyadenosine

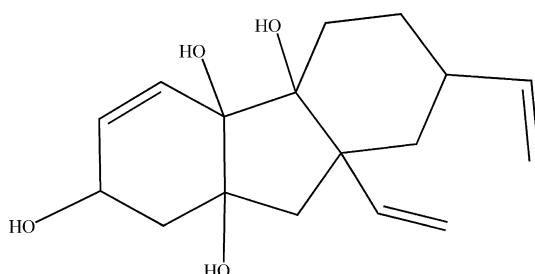
pp 788–791


Toshinori Suzuki*, Kiyoshi Iwakura, Yasuhide Takashima, Naoki Kasajima, Michiyo Inukai

Design and synthesis of vidarabine prodrugs as antiviral agents

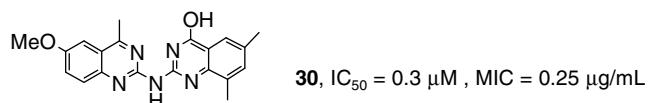
pp 792-796

Wei Shen ¹, Jae-Seung Kim, Phillip E. Kish, Jie Zhang, Stefanie Mitchell, Brian G. Gentry, Julie M. Breitenbach, John C. Drach, John Hilfinger ¹H NMR ¹³C NMR ¹⁵N NMR


The synthesis of vidarabine prodrugs and their antiviral activities is reported.

HY253, a novel compound isolated from *Aralia continentalis*, induces apoptosis via cytochrome c-mediated intrinsic pathway in HeLa cells

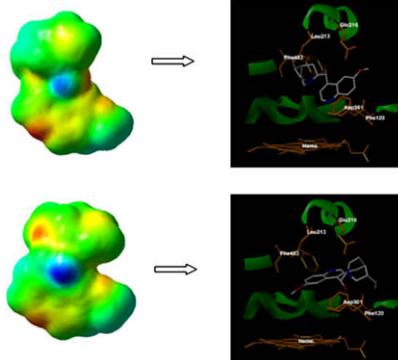
pp 797–799


Ha Lim Oh, Haeyoung Lim, Younghee Park, Yoongho Lim, Hyun Chul Koh, Youl-Hee Cho, Chul-Hoon Lee*

Quinazolin-2-ylamino-quinazolin-4-ols as novel non-nucleoside inhibitors of bacterial DNA polymerase III

pp 800–802

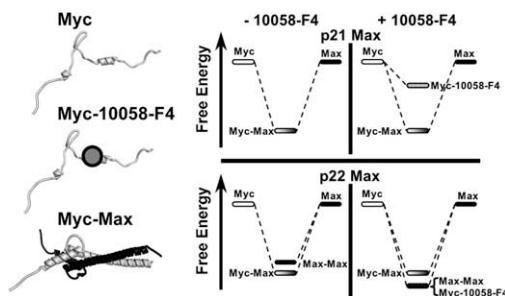
Joseph Guiles*, Xicheng Sun, Ian A. Critchley, Urs Ochsner, Ming Tregay, Kim Stone, Jennifer Bertino, Louis Green, Rob Sabin, Frank Dean, H. Garry Dallmann, Charles S. McHenry, Neboisa Janjic


A novel series of quinazolin-2-ylamino-quinazolin-4-ols as a new class of DNA polymerase IIIC inhibitors was identified. The synthesis, structure-activity relationships and functional activity are described.

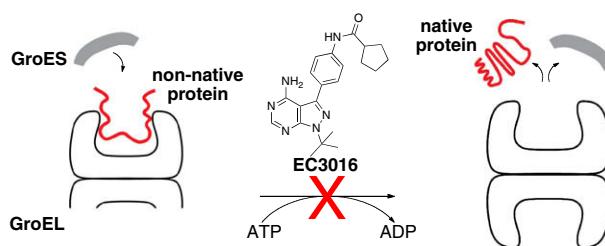
Insight into the effects of chiral isomers quinidine and quinine on CYP2D6 inhibition

pp 803–806

Chunzhi Ai, Yan Li, Yonghua Wang, Yadong Chen, Ling Yang*

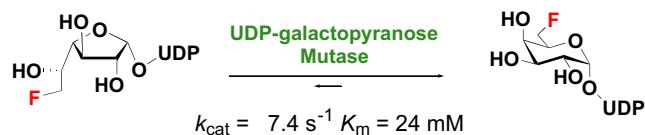

The different modes of the stereoisomers bound to CYP2D6 are resulted from the different molecular electrostatic potential surface.

Small-molecule perturbation of competing interactions between c-Myc and Max


pp 807–810

Ariele Viacava Follis, Dalia I. Hammoudeh, Andrew T. Daab, Steven J. Metallo *

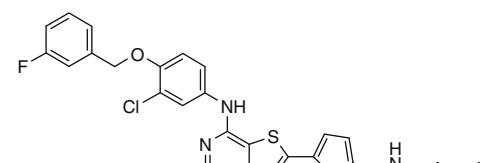
A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL


pp 811–813

Eli Chapman *, George W. Farr, Krystyna Furtak, Arthur L. Horwich

Probing UDP-galactopyranose mutase binding pocket: A dramatic effect on substitution of the 6-position of UDP-galactofuranose

pp 814–816

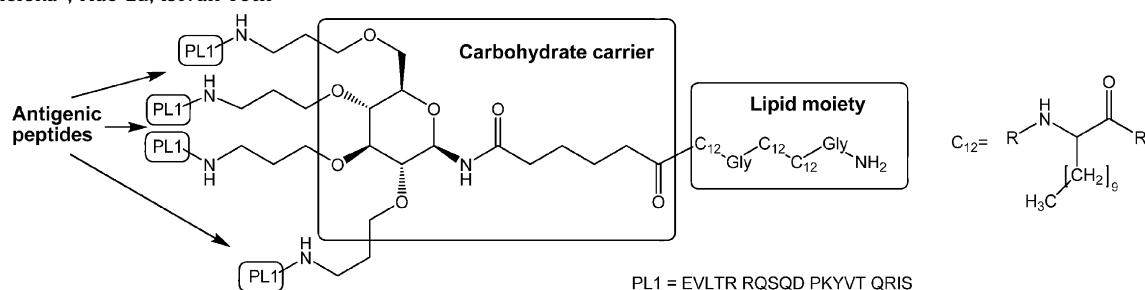

Guillaume Eppe, Pauline Peltier, Richard Daniellou, Caroline Nugier-Chauvin, Vincent Ferrières *, Stéphane P. Vincent *

Thienopyrimidine-based dual EGFR/ErbB-2 inhibitors

pp 817–820

Tara R. Rheault *, Thomas R. Caferro, Scott H. Dickerson, Kelly H. Donaldson, Michael D. Gaul, Aaron S. Goetz, Robert J. Mullin, Octerloney B. McDonald, Kimberly G. Petrov, David W. Rusnak, Lisa M. Shewchuk, Glenn M. Spehar, Anne T. Truesdale, Dana E. Vanderwall, Edgar R. Wood, David E. Uehling

Two new series of potent and selective dual EGFR/ErbB-2 kinase inhibitors derived from novel thienopyrimidine cores have been identified. Isomeric thienopyrimidine cores were evaluated as isosteres for a 4-anilinoquinazoline core and several analogs containing the thieno[3,2-*d*]pyrimidine core showed anti-proliferative activity with IC_{50} values less than 1 μ M against human tumor cells in vitro.

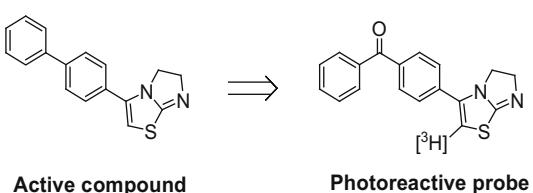


EGFR IC_{50} = 1 nM
ErbB-2 IC_{50} = 71 nM

Synthesis of a *Streptococcus pyogenes* vaccine candidate based on the M protein PL1 epitope

pp 821-824

Paula Simerska*, Hao Lu, Istvan Toth

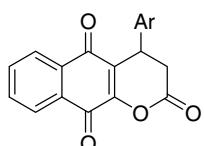


A complex vaccine candidate against group A streptococcus incorporating carrier, adjuvant and the antigen was synthesised using carbohydrate chemistry and solid-phase peptide methods.

Synthesis and evaluation of photoreactive probes to elucidate iodide efflux in thyrocytes

pp 825-827

Synthesis and evaluation of photoreactive probes to elucidate isozyme Séverine Derbré, Nathalie Lecat-Guillem, Florence Pillon, Yves Ambroise*

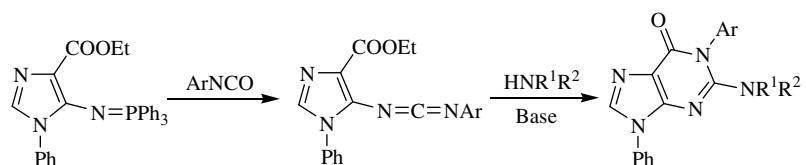


The synthesis of a radiolabeled photoreactive probe to elucidate the mechanism of transmembrane iodide fluxes in the thyroid gland is reported.

New potential inhibitors of DNA topoisomerase. Part II: Design and synthesis of α -lapachone derivatives under microwave irradiation

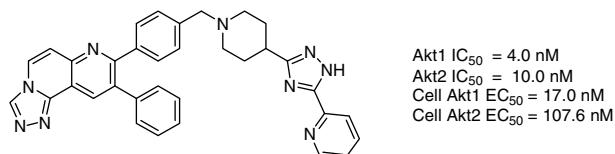
pp 828-830

Ping Wei, Xiaohong Zhang, Shuijiang Tu ^{*}, Shu Yan, Hanjie Ying, Pingkai Ouyang ^{*}


The synthesis of α -lapachone derivatives as new potential inhibitors of DNA topoisomerase II is reported.

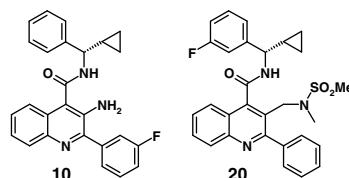
Efficient synthesis and biological evaluation of 1,2,9-trisubstituted 1,9-dihydro-6H-purin-6-ones

pp 831-833


Nian-Yu Huang, Yong-Jiu Jiang, Ming-Wu Ding*, Li-Wu Fu*, Hong-Wu He

Allosteric inhibitors of Akt1 and Akt2: Discovery of [1,2,4]triazolo[3,4-f][1,6]naphthyridines with potent and balanced activity

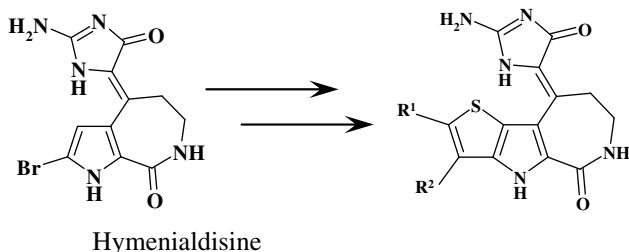
pp 834–836


Yiwei Li*, Jun Liang, Tony Siu, Essa Hu, Michael A. Rossi, Stanley F. Barnett, Deborah Defeo-Jones, Raymond E. Jones, Ronald G. Robinson, Karen Leander, Hans E. Huber, Sachin Mittal, Nicholas Cosford, Peppi Prasit

New quinoline NK₃ receptor antagonists with CNS activity

pp 837-840

Paul W. Smith*, Paul A. Wyman, Peter Lovell, Caroline Goodacre, Halina T. Serafinowska, Antonio Vong, Frank Harrington, Sean Flynn, Daniel M. Bradley, Rod Porter, Sara Coggon, Graham Murkitt, Kirsten Searle, David R. Thomas, Jeannette M. Watson, William Martin, Zining Wu, Lee A. Dawson

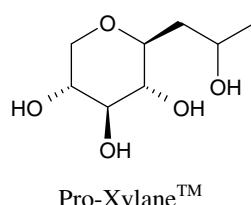


SAR investigation in the quinoline series of NK_3 antagonists led to identification of 3-amino quinoline **10** (GSK172981) and sulfonamide **20** (GSK256471). Both compounds are high affinity, potent NK_3 receptor antagonists which produce excellent NK_3 receptor occupancy in an ex vivo binding study in gerbil cortex.

Synthesis and CHK1 inhibitory potency of Hymenialdisine analogues

pp 841-844

Jean-Gilles Parmentier, Bernard Portevin, Roy M. Golsteyn, Alain Pierré, John Hickman, Philippe Gloanec, Guillaume De Nanteuil*

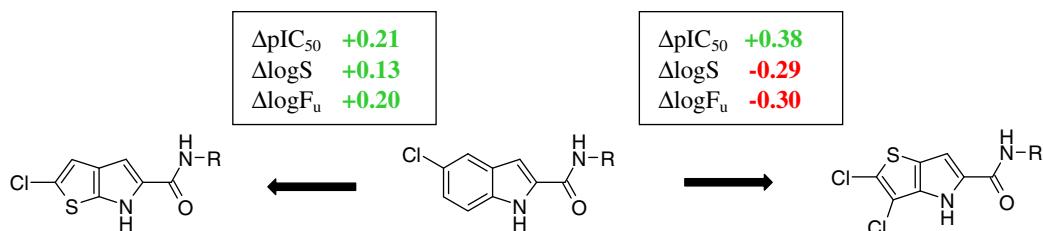


Thieno[3,2-*b*]pyrroloazepinones analogues of Hymenialdisine were prepared and found to be potent inhibitors of CHK1.

Synthesis of Pro-Xylane™: A new biologically active C-glycoside in aqueous media

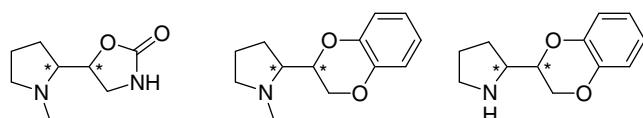
pp 845-849

Alexandre Cavezza, Christophe Boulle, Amélie Guéguinat, Patrick Pichaud, Simon Trouille, Louis Ricard, Maria Dalko-Csiba*



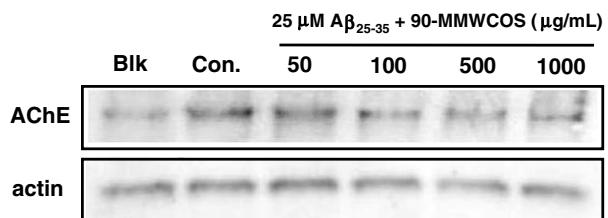
The scope and limitation of Lubineau's reaction were evaluated for the synthesis of C-glycosides. Further transformation of side chain carbonyl was also achieved. Optimization of these two steps was investigated in xylose case. Some of the compounds were shown to stimulate sulfated glycosaminoglycans (GAGs) synthesis. Pro-XylaneTM was identified as the best activator of GAGs biosynthesis.

Matched molecular pair analysis of activity and properties of glycogen phosphorylase inhibitors


pp 850–853

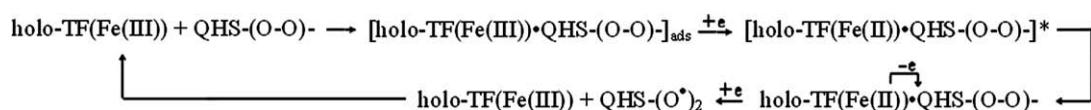
Alan M. Birch, Peter W. Kenny*, Iain Simpson, Paul R. O. Whittamore

5-(2-Pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes: Synthesis of all the stereoisomers and $\alpha 4\beta 2$ nicotinic affinity


pp 854–859

Marco Pallavicini*, Cristiano Bolchi, Matteo Binda, Antonio Cilia, Francesco Clementi, Rossana Ferrara, Laura Fumagalli, Cecilia Gotti, Milena Moretti, Alessandro Pedretti, Giulio Vistoli, Ermanno Valoti

Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by $\text{A}\beta_{25-35}$ in PC12 cells

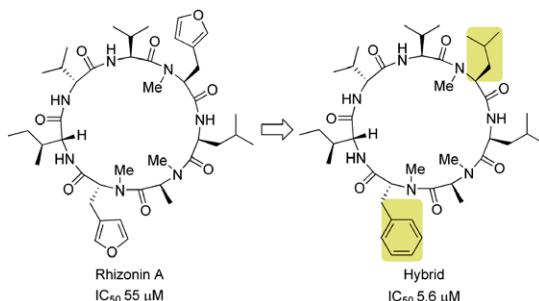

pp 860–862

Sang-Hoon Lee, Jin-Sook Park, Se-Kwon Kim*, Chang-Bum Ahn, Jae-Young Je*

A 90-MMWCOS (MW 1000–5000Da) suppressed the level of AChE protein expression and AChE activity induced by $\text{A}\beta_{25-35}$ in PC12 cell lines.**Electrochemical activity of holotransferrin and its electrocatalysis-mediated process of artemisinin**

pp 863–866

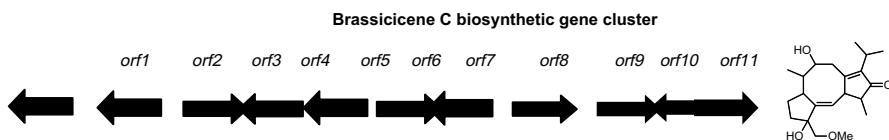
Huai-Hong Cai, Jiye Cai, Pei-Hui Yang*



A sequential two-step process is proposed to explain holotransferrin-mediated electrocatalytic reduction of artemisinin. Holotransferrin (holo-TF) initially interacts with artemisinin (QHS) to form an adduct $[\text{holo-TF(Fe(III))}\cdot\text{QHS-(O-O)-}]_{\text{ads}}$, subsequently, holo-TF(Fe(III)) obtains one electron and then forms an intermediate adduct $[\text{holo-TF(Fe(II))}\cdot\text{QHS-(O-O)-}]^*$, which induces the cleavage of the peroxide bond in artemisinin and then generates $\text{QHS-(O)}_2^{\bullet}$ free radicals.

Structure-based hybridization of the bioactive natural products rhizonin A and ternatin leading to a selective fat-accumulation inhibitor against 3T3-L1 adipocytes

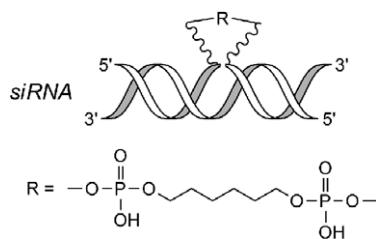
pp 867–869


Kenichiro Shimokawa, Kaoru Yamada, Daisuke Uemura*

Identification and functional analysis of brassicicene C biosynthetic gene cluster in *Alternaria brassicicola*

pp 870–874

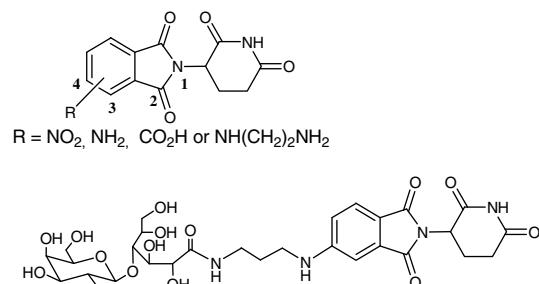
Atsushi Minami*, Naoto Tajima, Yusuke Higuchi, Tomonobu Toyomasu, Takeshi Sassa, Nobuo Kato, Tohru Dairi*



The biosynthetic gene cluster of brassicicene C was identified in *Alternaria brassicicola* strain ATCC 96836 from genome database search.

Effect of incorporation of alkyl linkers into siRNAs on RNA interference

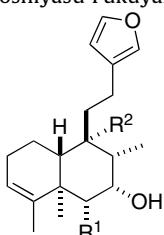
pp 875–877


Yoshihito Ueno*, Kayo Yoshikawa, Yoshiaki Kitamura, Yukio Kitade*

Preliminary biological evaluations of new thalidomide analogues for multiple sclerosis application

pp 878–881

Christiane Contino-Pépin*, Audrey Parat, Sandrine Périno, Christine Lenoir, Michel Vidal, Hervé Galons, Stephen Karlik, Bernard Pucci*

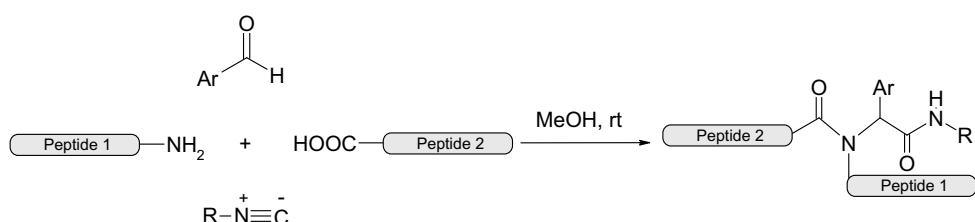


Synthesis and biological assessments in vitro (on EAhy926 cells) and in vivo (EAE model) of new thalidomide analogues.

Novel NGF-potentiating diterpenoids from a Brazilian medicinal plant, *Ptychopetalum olacoides*

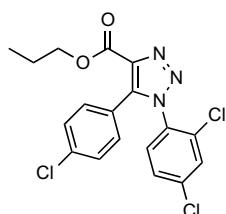
pp 882–886

Wanxia Tang, Miwa Kubo, Kenichi Harada, Hideaki Hioki, Yoshiyasu Fukuyama *


1 R¹ = OH, R² = CH₃**2** R¹ = H, R² = CH₂OH

Among four novel clerodane-type diterpenoids **1–4** isolated from *Ptychopetalum olacoides*, **1** and **2** were found to significantly enhance neurite-outgrowth of NGF-differentiated PC12 cells at 0.1–50 μM.

Synthesis of novel Gn-RH analogues using Ugi-4MCR

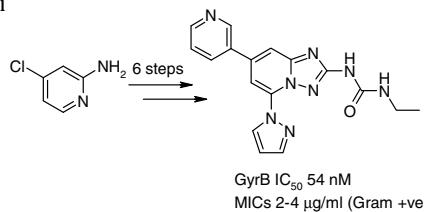

pp 887–890

Armin Arbanian, Mahdieh Mohammadnejad, Saeed Balalaie *, Jürgen H. Gross

Synthesis and CB1 cannabinoid receptor affinity of 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles

pp 891–893

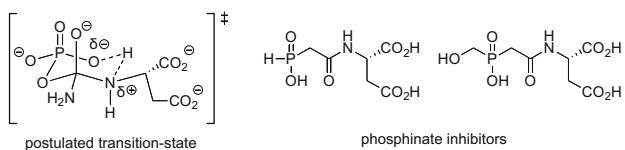
Hong Shu, Sari Izenwasser, Dean Wade, Edwin D. Stevens, Mark L. Trudell *


A series of 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles were synthesized regioselectively using click chemistry and evaluated at CB1 cannabinoid receptors. The *n*-propyl ester ($K_i = 4.6$ nM) exhibited the most potent affinity of the series.

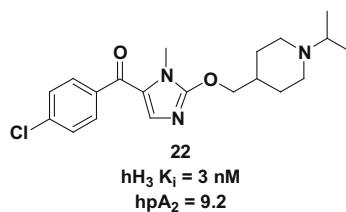
DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: Synthesis and antibacterial activity

pp 894–899

Stephen P. East *, Clara Bantry White, Oliver Barker, Stephanie Barker, James Bennett, David Brown, E. Andrew Boyd, Christopher Brennan, Chandana Chowdhury, Ian Collins, Emmanuelle Convers-Reignier, Brian W. Dymock, Rowena Fletcher, David J. Haydon, Mihaly Gardiner, Stuart Hatcher, Peter Ingram, Paul Lancett, Paul Mortenson, Konstantinos Papadopoulos, Carol Smee, Helena B. Thomaides-Brears, Heather Tye, James Workman, Lloyd G. Czaplewski *


The synthesis and antibacterial activities of three chemotypes of DNA supercoiling inhibitors based on imidazolo[1,2-*a*]pyridine and [1,2,4]triazolo[1,5-*a*]pyridine scaffolds that target the ATPase subunits of DNA gyrase and Topoisomerase IV (GyrB/ParE) is reported. The most potent scaffold was selected for optimization leading to a series with potent Gram-positive antibacterial activity and a low resistance frequency.

Submicromolar phosphinic inhibitors of *Escherichia coli* aspartate transcarbamoylase

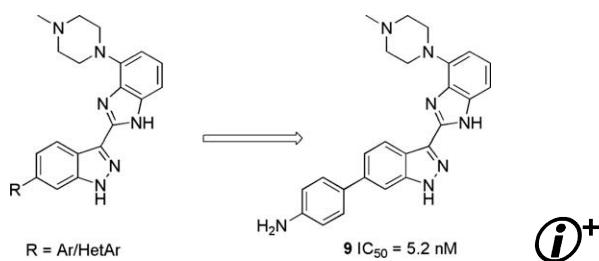

pp 900–902

Laëtitia Coudray, Evan R. Kantrowitz, Jean-Luc Montchamp *

Novel imidazole-based histamine H₃ antagonists

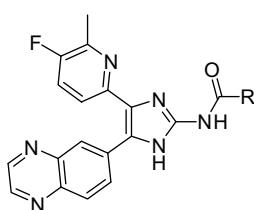
pp 903–907

Jill A. Jablonowski *, Kiev S. Ly, Michael Bogenstaetter, Curt A. Dvorak, Jamin D. Boggs, Lisa K. Dvorak, Brian Lord, Kirsten L. Miller, Curt Mazur, Sandy J. Wilson, Timothy W. Lovenberg, Nicholas I. Carruthers


A novel series of imidazole containing histamine H₃ receptor ligands were investigated and found to be potent functional antagonists with appreciable brain uptake.

2-(6-Phenyl-1*H*-indazol-3-yl)-1*H*-benzo[d]imidazoles: Design and synthesis of a potent and isoform selective PKC- ζ inhibitor

pp 908–911

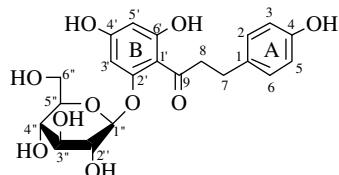

John I. Trujillo *, James R. Kiefer *, Wei Huang, Atli Thorarensen, Li Xing, Nicole L. Caspers, Jacqueline E. Day, Karl J. Mathis, Kuniko K. Kretzmer, Beverley A. Reitz, Robin A. Weinberg, Roderick A. Stegeman, Ann Wrightstone, Lori Christine, Robert Compton, Xiong Li

The design and synthesis of a potent and isoform selective PKC ζ (9, IC_{50} = 5.2 nM, 10- to 20,000-fold selective over other PKC isoforms, 200-fold selective over CDK-2) inhibitor is reported.

2-Aminoimidazoles inhibitors of TGF- β receptor 1

pp 912–916

Dominique Bonafoux *, Claudio Chuaqui, P. Ann Boriack-Sjodin, Chris Fitch, Gretchen Hankins, Serene Josiah, Cheryl Black, Gregg Hetu, Leona Ling, Wen-Cherng Lee *



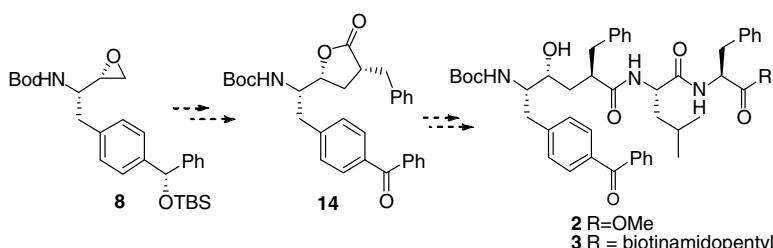
Acylated 2-amidoimidazoles were identified as potent and selective inhibitor of TGF- β R1 that offer a superior pharmacokinetic profile compared to unsubstituted or alkylated 2-aminoimidazoles.

Synthesis and biological evaluation of phloridzin analogs as human concentrative nucleoside transporter 3 (hCNT3) inhibitors

pp 917–921

Amol Gupte, John K. Buolamwini*

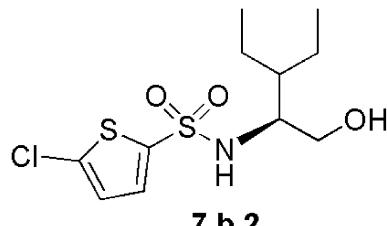
Phloridzin


The synthesis and [³H]-uridine uptake investigation of the structure–activity relationship of new phloridzin analogs at the human concentrative nucleoside transporter 3 (hCNT3) is reported.

Stereo-controlled synthesis of novel photoreactive γ -secretase inhibitors

pp 922–925

Guangli Yang, Ye Ingrid Yin, Jiong Chun, Christopher C. Shelton, Ouathek Ouerfelli, Yue-Ming Li*

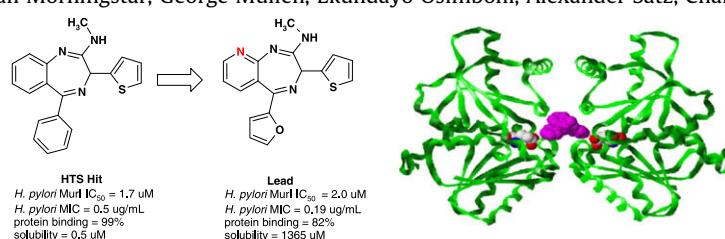


Synthesis of a photoreactive dipeptide isostere at the P1 position.

(S)-N-(5-Chlorothiophene-2-sulfonyl)- β , β -diethylalaninol a Notch-1-sparing γ -secretase inhibitor

pp 926–929

Derek C. Cole*, Joseph R. Stock, Anthony F. Kreft, Madelene Antane, Suzan H. Aschmies, Kevin P. Atchison, David S. Casebier, Thomas A. Comery, George Diamantidis, John W. Ellingboe, Boyd L. Harrison, Yun Hu, Mei Jin, Dennis M. Kubrak, Peimin Lu, Charles W. Mann, Robert L. Martone, William J. Moore, Aram Oganesian, David R. Riddell, June Sonnenberg-Reines, Shaiu-Ching Sun, Erik Wagner, Zheng Wang, Kevin R. Woller, Zheng Xu, Hua Zhou, J. Steven Jacobsen



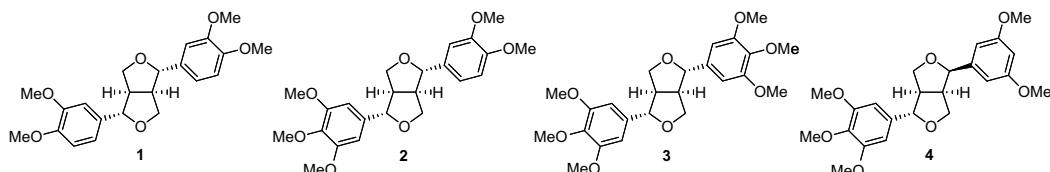
7.b.2

Potent and selective inhibitors of *Helicobacter pylori* glutamate racemase (Muri): Pyridodiazepine amines

pp 930–936

Bolin Geng*, Gregory Basarab, Janelle Comita-Prevoir, Madhusudhan Gowravaram, Pamela Hill, Andrew Kiely, James Loch, Lawrence MacPherson, Marshall Morningstar, George Mullen, Ekundayo Osimboni, Alexander Satz, Charles Eyermann, Tomas Lundqvist

HTS Hit
 $H. pylori$ Muri IC_{50} = 1.7 μ M
 $H. pylori$ MIC = 0.5 μ g/mL
 protein binding = 99%
 solubility = 0.5 μ M

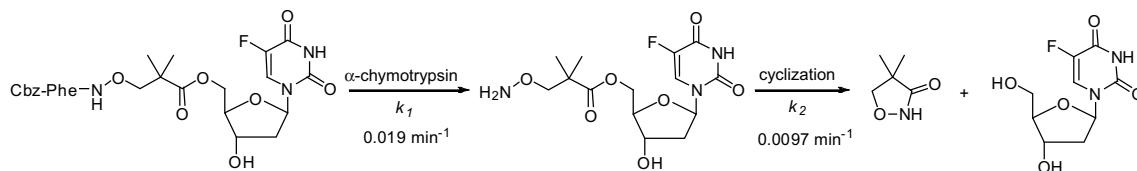

Lead
 $H. pylori$ Muri IC_{50} = 2.0 μ M
 $H. pylori$ MIC = 0.19 μ g/mL
 protein binding = 82%
 solubility = 1365 μ M

An SAR study of a screening hit generated a series of pyridodiazepine amines as inhibitors of *Helicobacter pylori* glutamate racemase (Muri) showing highly selective anti-*H. pylori* activity, marked improved solubility, and reduced plasma protein binding. X-ray co-crystal E-I structures were obtained. These uncompetitive allosteric inhibitors bind at the Muri dimer interface.

In vitro anti-inflammatory activity of lignans isolated from *Magnolia fargesii*

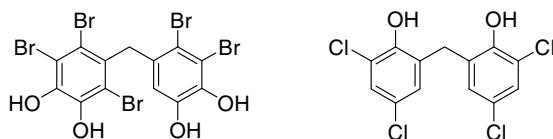
pp 937–940

Jae Yeon Kim, Hyo Jin Lim, Da Yeon Lee, Ji Sun Kim, Do Hee Kim, Hwa Jin Lee, Hee Doo Kim, Raok Jeon, Jae-Ha Ryu*


Lignans from *Magnolia fargesii* inhibit the production of NO, PGE₂ and expression of iNOS and COX-2 by activated microglia.

3-Aminoxypipionic acid-based linker system for cyclization activation in prodrug design

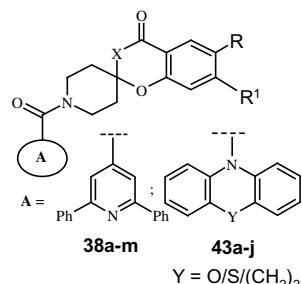
pp 941–944


Yiyu Ge, Xinghua Wu, Dazhi Zhang, Longqin Hu *

Synthesis and antimicrobial activities of halogenated bis(hydroxyphenyl)methanes

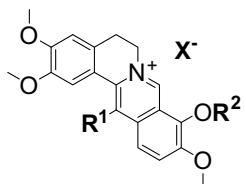
pp 945–948

Ki-Bong Oh, Ji Hye Lee, Jong Wook Lee, Kyung-Mi Yoon, Soon-Chun Chung, Heung Bae Jeon, Jongheon Shin, Hyi-Seung Lee*

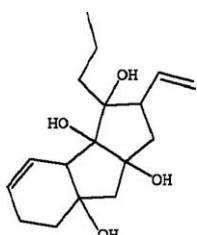

The synthesis and bioactivity of halophenols are described.

Synthesis of spiro[chroman-2,4'-piperidin]-4-one derivatives as acetyl-CoA carboxylase inhibitors

pp 949–953


Pundlik Shinde, Sanjay K. Srivastava, Rajendra Odedara, Davinder Tuli, Siralee Munshi, Jitendra Patel, Shitalkumar P. Zambad, Rajesh Sonawane, Ramesh C. Gupta*, Vijay Chauthaiwale, Chaitanya Dutt

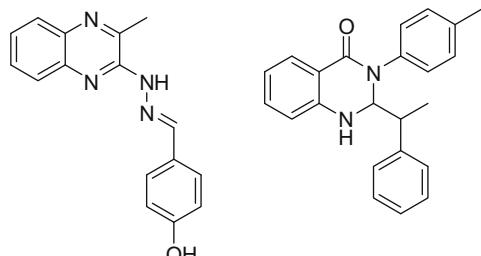
A number of spiro[chroman-2,4'-piperdin]-4-one derivatives (**38a–m** and **43a–j**) have been designed, synthesized and screened for *in vitro* ACC inhibition. *In vivo* studies of compound **38j** has been carried out.


Synthesis and structure–activity relationships of novel, substituted 5,6-dihydrodibenzo[a,g]quinolizinium P2X₇ antagonists pp 954–958

Ga Eun Lee, Ho-Sung Lee, So Deok Lee, Jung-Ho Kim, Won-Ki Kim, Yong-Chul Kim *

HY251, a novel cell cycle inhibitor isolated from *Aralia continentalis*, induces G₁ phase arrest via p53-dependent pathway in HeLa cells pp 959–961

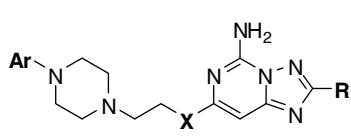
Ha Lim Oh, Haeyoung Lim, Youl-Hee Cho, Hyun Chul Koh, Hojung Kim, Yoongho Lim, Chul-Hoon Lee *


The chemical structure of HY251 3-propyl-2-vinyl-1,2,3,3a,3b,6,7,7a,8,8a-decahydrocyclopenta[a]indene-3,3a,7a,8a-tetraol.

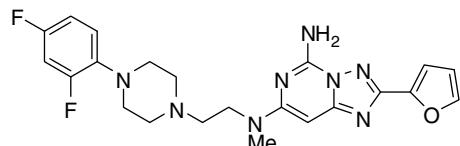
Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). Part II: Challenges in hit-to-lead pp 962–966

Richard Williams, Colleen M. Niswender, Qingwei Luo, Uyen Le, P. Jeffrey Conn, Craig W. Lindsley *

The synthesis and SAR of two mGluR4 positive allosteric modulator leads **6** and **7** is described. VU001171 (**6**) represents the most potent ($EC_{50} = 650$ nM), efficacious (141% Glu Max) and largest fold shift (36-fold) of any mGluR4 PAM ever described. However, this work highlights the challenges in hit-to-lead for mGluR4 PAMs, with multiple confirmed HTS hits displaying little or no tractable SAR.



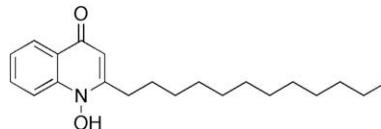
VU0001171, **6**


VU0092145, **7**

Potent and selective adenosine A_{2A} receptor antagonists: 1,2,4-Triazolo[1,5-c]pyrimidines pp 967–971

Bernard R. Neustadt *, Hong Liu, Jinsong Hao, William J. Greenlee, Andrew W. Stamford, Carolyn Foster, Leyla Arik, Jean Lachowicz, Hongtao Zhang, Rosalia Bertorelli, Silva Fredduzzi, Geoffrey Varty, Mary Cohen-Williams, Kwokei Ng

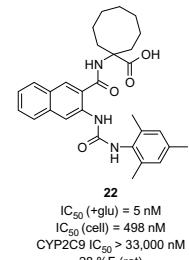
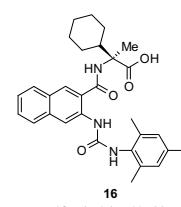
1


16g A_{2A} Ki = 1.0nM, A₁/A_{2A} = 1580 X

Synthetic methodology was developed for a series of 1,2,4-triazolo[1,5-c]pyrimidines of type **1**. These compounds, exemplified by **16g**, showed potent and selective adenosine A_{2A} antagonist activity, as well as oral activity in a rodent model of Parkinson's disease.

Type II NADH dehydrogenase of the respiratory chain of *Plasmodium falciparum* and its inhibitors

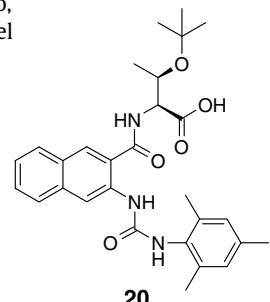
pp 972–975



Carolyn K. Dong, Vishal Patel, Jimmy C. Yang, Jeffrey D. Dvorin, Manoj T. Duraisingh, Jon Clardy, Dyann F. Wirth*

Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes: 1. Identification of 1-amino-1-cycloalkyl carboxylic acid headgroups

pp 976–980

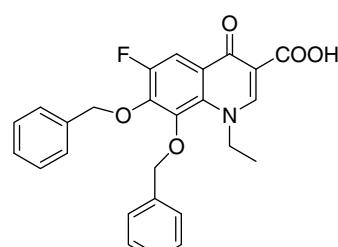
Steven M. Sparks*, Pierette Banker, David M. Bickett, H. Luke Carter, Daphne C. Clancy, Scott H. Dickerson, Kate A. Dwornik, Dulce M. Garrido, Pamela L. Golden, Robert T. Nolte, Andrew J. Peat, Lauren R. Sheckler, Francis X. Tavares, Stephen A. Thomson, Liping Wang, James E. Weiel


Optimization of the amino acid residue within a series of anthranilimide-based glycogen phosphorylase inhibitors is described. These studies culminated in the identification of anthranilimides **16** and **22** which displayed potent *in vitro* inhibition of GP_A in addition to reduced inhibition of CYP2C9 and excellent pharmacokinetic properties.

Anthranilimide-based glycogen phosphorylase inhibitors for the treatment of Type 2 diabetes: 2. Optimization of serine and threonine ether amino acid residues

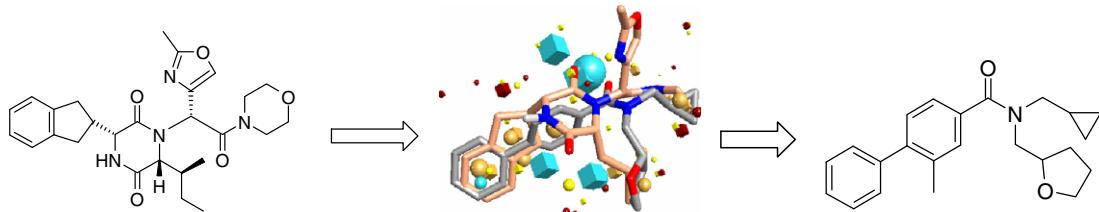
pp 981–985

Steven M. Sparks*, Pierette Banker, David M. Bickett, Daphne C. Clancy, Scott H. Dickerson, Dulce M. Garrido, Pamela L. Golden, Andrew J. Peat, Lauren R. Sheckler, Francis X. Tavares, Stephen A. Thomson, James E. Weiel


Optimization of the amino acid residue of a series of anthranilimide based glycogen phosphorylase inhibitors is described leading to the identification of serine and threonine ether analogs. *t*-Butylthreonine analog **20** displayed potent *in vitro* inhibition of GP_A, low potential for P450 inhibition, and excellent pharmacokinetic properties.

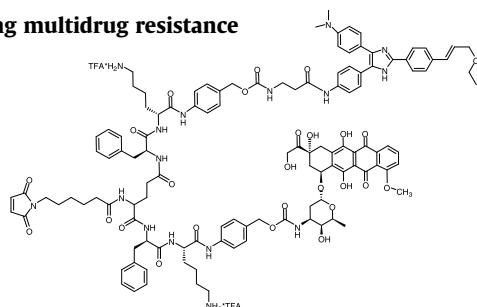
Synthesis, *in vitro* antitrypanosomal and antibacterial activity of phenoxy, phenylthio or benzyloxy substituted quinolones

pp 986–989


Xiang Ma*, Weicheng Zhou*, Reto Brun

A series of quinolones based novel molecules was synthesized and evaluated as antitrypanosomal agents. Compound **10** has shown significant *in vitro* activity against *Trypanosoma cruzi*.

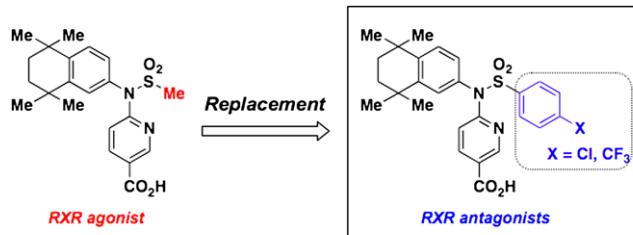
10, IC_{50} = 1.3 μ g/mL


Discovery and optimization of highly ligand-efficient oxytocin receptor antagonists using structure-based drug design pp 990–994

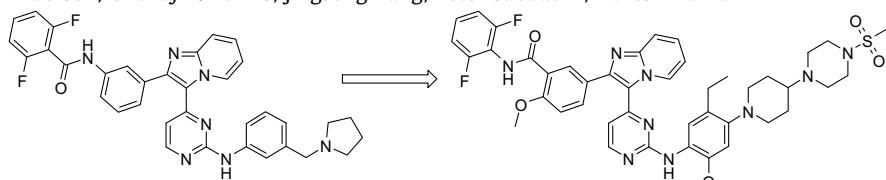
Benjamin R. Bellenie*, Nicholas P. Barton, Amanda J. Emmons, Jag P. Heer, Cristian Salvagno

Development of dual-acting prodrugs for circumventing multidrug resistance pp 995–1000

Khalid Abu Ajaj, Felix Kratz*



We have developed a novel dual-acting maleimide-bearing prodrug that incorporates the anticancer agent doxorubicin and an inhibitor of the P-glycoprotein efflux pump that is over-expressed in multidrug resistant tumor cells. Additionally, the prodrug contains a 1,6-self-immolative spacer coupled to the dipeptide Phe-Lys that acts as a substrate for cathepsin B. The prodrug, once bound through its maleimide moiety to the cysteine-34 group of human serum albumin, was cleaved by cathepsin B and in tumor homogenates demonstrating a release of the anticancer agent doxorubicin and the inhibitor.


Replacing alkyl sulfonamide with aromatic sulfonamide in sulfonamide-type RXR agonists favors switch towards antagonist activity pp 1001–1003

Ken-ichi Morishita, Nobumasa Yakushiji, Fuminori Ohsawa, Kayo Takamatsu, Nobuyasu Matsuura, Makoto Makishima, Masatoshi Kawahata, Kentaro Yamaguchi, Akihiro Tai, Kenji Sasaki, Hiroki Kakuta*

Discovery and optimization of imidazo[1,2-a]pyridine inhibitors of insulin-like growth factor-1 receptor (IGF-1R) pp 1004–1008

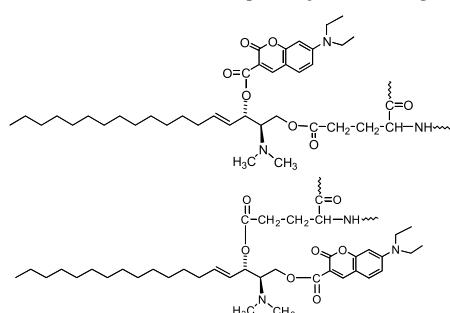
Kyle A. Emmitt*, Brian J. Wilson, Erich W. Baum, Holly K. Emerson, Kevin W. Kuntz, Kristen E. Nailor, James M. Salovich, Stephon C. Smith, Mui Cheung, Roseanne M. Gerding, Kirk L. Stevens, David E. Uehling, Robert A. Mook Jr., Ganesh S. Moorthy, Scott H. Dickerson, Anne M. Hassell, M. Anthony Leesnitzer, Lisa M. Shewchuk, Arthur Groy, Jason L. Rowand, Kelly Anderson, Charity L. Atkins, Jingsong Yang, Peter Sabbatini, Rakesh Kumar


IGF-1R $IC_{50} = 180$ nM
IGF-1R Cellular $IC_{50} = 5930$ nM

IGF-1R $IC_{50} = 27$ nM
IGF-1R Cellular $IC_{50} = 22$ nM

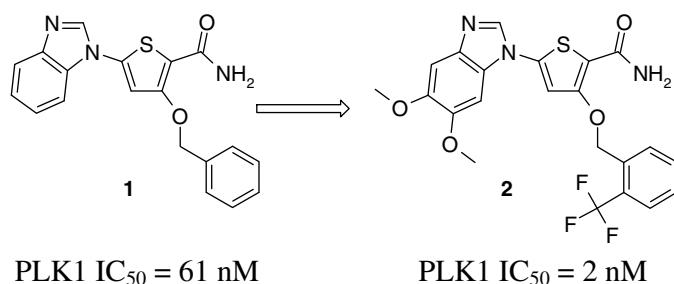
New analogues of agmatine with higher affinity to imidazoline receptors

pp 1009–1011


Adam P. Treder, Ryszard Andruszkiewicz*, Włodzimierz Zgoda, Celeste Ford, Alan L. Hudson

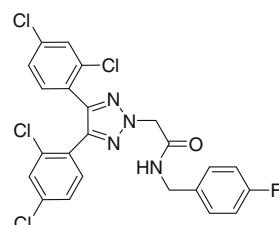
N,N-Dimethylsphingosine conjugates of poly-L-glutamic acid: Synthesis, characterization, and initial biological evaluation

pp. 1012–1017


Sukhen C Ghosh, Edmond Auzenne, Moigan Khodadadian, David Farquhar, Jim Klostergaard*

Discovery of thiophene inhibitors of polo-like kinase

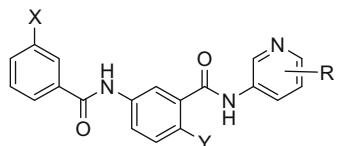
pp 1018–1021


Kyle A. Emmitt*, C. Webb Andrews, Jennifer G. Badiang, Ronda G. Davis-Ward, Hamilton D. Dickson, David H. Drewry, Holly K. Emerson, Andrea H. Epperly, Daniel F. Hassler, Victoria B. Knick, Kevin W. Kuntz, Timothy J. Lansing, James A. Linn, Robert A. Mook Jr., Kristen E. Naylor, James M. Salovich, Glenn M. Spehar, Mui Cheung

1,2,3-Triazole derivatives as new cannabinoid CB₁ receptor antagonists

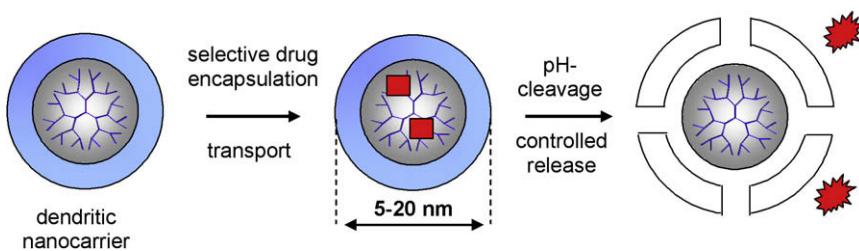
pp 1022-1025

Duen-Ren Hou*, Safiul Alam, Ting-Chun Kuan, Mani Ramanathan, Tsung-Pang Lin, Ming-Shiu Hung



Development of new 1,2,3-triazoles as effective and selective CB1 receptor antagonists ($IC_{50} = 11.6 \pm 3.4$ nM; CB2/CB1 > 1000) is reported.

Identification of amidoheteroaryls as potent inhibitors of mutant (V600E) B-Raf kinase with in vivo activity**pp 1026–1029**


Paul D. Lyne*, Brian Aquila, Donald J. Cook, Les A. Dakin, Jay Ezhuthachan, Stephanos Ioannidis, Timothy Pontz, Mei Su, Qing Ye, Xiaolan Zheng, Michael H. Block, Scott Cowen, Tracy L. Deegan, John W. Lee, David A. Scott, Dominique Cusseau, Lisa Drew, Srinivasu Poondru, Minhui Shen, Allan Wu

Potent amidoheteroaryls inhibitors of V600E B-Raf with in vivo activity.

Development of pH-responsive core–shell nanocarriers for delivery of therapeutic and diagnostic agents**pp 1030–1034**

Shangjie Xu, Ying Luo, Ralph Graeser, André Warnecke, Felix Kratz, Peter Hauff, Kai Licha, Rainer Haag*

OTHER CONTENTS**Retraction notice****p 1035****Instructions to contributors****p 1**

*Corresponding author

i† Supplementary data available via ScienceDirect

COVER

Overlay of high resolution co-crystal structures of R-22-ADP (cyan) and 1-ADP (green) bound in an allosteric binding site of the mitotic kinesin KSP. [Roecker, A. J.; Coleman, P. J.; Mercer, S. P.; Schreier, J. D.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; Lobell, R. B.; Tao, W.; Diehl, R. E.; South, V. J.; Davide, J. P.; Kohl, N. E.; Yan, Y.; Kuo, L. C.; Li, C.; Fernandez-Metzler, C.; Mahan, E. A.; Prueksaritanont, T.; Hartman, G. D. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 5677.]

Indexed/Abstracted in: Beilstein, Biochemistry & Biophysics Citation Index, CANCERLIT, Chemical Abstracts, Chemistry Citation Index, Current Awareness in Biological Sciences/BIOBASE, Current Contents: Life Sciences, EMBASE/Excerpta Medica, MEDLINE, PASCAL, Research Alert, Science Citation Index, SciSearch, TOXFILE